
 

 

  
Abstract—In this paper, we propose a new set of separable two-

dimensional discrete orthogonal moments called Charlier-
Tchebichef’s moments. This set of moments is based on the bivariate 
discrete orthogonal polynomials defined from the product of Charlier 
and Tchebichef discrete orthogonal polynomials with one variable. 
We also present an approach for fast computation of Charlier-
Tchebichef’s moments by using the image slice representation. In this 
approach the image is decomposes into series of non-overlapped 
binary slices and each slice is described by a number of homogenous 
rectangular blocks. Once the image is partitioned into slices and 
blocks, the computation of Charlier-Tchebichef’s moments can be 
accelerated, as the moments can be computed from the blocks of each 
slice. A novel set of Charlier-Tchebichef invariant moments is also 
presented. These invariant moments are derived algebraically from 
the geometric invariant moments and their computation is accelerated 
using an image representation scheme. The presented approaches are 
tested in several well known computer vision datasets including 
computational time, image reconstruction, moment’s invariability and 
classification of objects. The performance of these invariant moments 
used as pattern features for a pattern classification is compared with 
Tchebichef-Krawtchouk, Tchebichef-Hahn and Krawtchouk-Hahn 
invariant moments 

Keywords—Charlier-Tchebichef’s invariant moments, Image 
reconstruction, Pattern recognition, Classification. 

I. INTRODUCTION 
he image moments has been widely used successfully for 
image analysis and pattern recognition [1-5]. Hu is the 

first who introduced the geometric moments in pattern 
recognition [1]. The non orthogonal property of geometric 
moments causes the redundancy of information. To overcome 
this problem, the continuous orthogonal moments as Legendre 
[2], Zernike [2], Gegenbauer [3] and Fourier-Mellin [4] are 
introduced in the fields of image. The orthogonal property of 
continuous moments assures the robustness against noise and 
eliminates the redundancy of information [2-4], but their 
computation requires the discretization of continuous space 
and the approximation of the integrals which increases the 
computational complexity and causes the discretization error     
[5-9]. To eliminate this error, the discrete orthogonal moments 
such as Tchebichef [8], Krawtchouk [9] and Hahn [10] have 
been introduced in image analysis and pattern recognition. The 
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use of this set of moments eliminates the need for numerical 
approximation [11]. All of continuous and discrete orthogonal 
moments have separable basic functions that can be expressed 
as two separate terms by producing the two same classical 
orthogonal polynomials with one variable. Recently, a novel 
set of discrete and continuous orthogonal moments based on 
the bivariate orthogonal polynomials have been introduced 
into the field of image analysis and pattern recognition [12-
14]. These series of bivariate polynomials are solutions of the 
second-order partial differential equations [15-16]. A general 
method for generating bivariate continuous orthogonal 
polynomials from continuous orthogonal polynomials with one 
variable is given by Koornwinder in [17]. Dunkl and Xu in 
[18] have proposed an excellent paper of bivariate discrete 
orthogonal polynomials as a product of two families of 
classical discrete orthogonal polynomials with one variable. 
Zhu has studied in [12] seven types of continuous and discrete 
orthogonal moments based on the tensor product of two 
different orthogonal polynomials with one variable. The 
computation of discrete orthogonal moments is limited by the 
high computational cost and the propagation of numerical 
error in the computation of polynomials values [19]. To limit 
this error the Scientists apply the recurrence relation with 
respect to variable x instead of order n  in the computation of 
discrete orthogonal polynomials [19]. To reduce the 
computational time cost of moments, several algorithms are 
introduced in literature [20-26]. If the most work has focused 
on the discrete and continuous moments based on the product 
of the two same classical orthogonal polynomials with one 
variable, no attention has been paid to accelerate the time 
computation of discrete orthogonal moments based on the 
product of two different discrete orthogonal polynomials with 
one variable. In this paper, we present a new set of discrete 
orthogonal moments based on the product of Charlier and 
Tchebichef discrete orthogonal polynomials which are denoted 
Charlier-Tchebichef moments (CTM). We also present an 
approach to accelerate the time computation of CTM based on: 
1) The methodology of image slices representation (ISR): In 

this method the image is decomposes into series of non-
overlapped binary slices and each slice is described by a 
number of homogenous rectangular blocks. Once the 
image is partitioned into slices and blocks, the 
computation of CTM can be accelerated, as the moments 
can be computed from the blocks of each slice. 

Image analysis using separable discrete 
moments of Charlier-Tchebichef 
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2) The computation the bivariate discreet orthogonal 
polynomials of Charlier-Tchebichef by using the 
recurrence relation with respect to variable x  instead of 
order n .  

The paper also tests the ability of CTM for image 
reconstruction and classification of objects. For the purpose of 
objects classification, it is vital that presented CTM is 
independent of rotation, scaling and translation of the image. 
For this, we have proposed a new set of discrete invariant 
moments of Charlier-Tchebichef (CTMI) under translation, 
scaling and rotation of the image. The CTMI is derived 
algebraically from the geometric invariant moments. A fast 
computation algorithm of CTMI is also presented using the 
image slice representation methodology (ISR). The accuracy 
of object classification by our descriptors CTMI is compared 
with Tchebichef-Krawtchouk invariant moments (TKMI) [12], 
Tchebichef-Hahn invariant moments (THMI) [12] and 
Krawtchouk-Hahn (KHM)[12] invariant moments. The rest of 
the paper is organized as follows: In Section 2, we present the 
known results of the Charlier and Tchebichef discrete 
orthogonal polynomials with one variable and the bivariate 
discrete orthogonal polynomials of Charlier -Tchebichef. 
Section 3 studies the computation of CTM discrete moments 
by two methods: the direct method and the fast method. The 
image reconstruction by CTM is given in section 4.  Section 5 
focuses on the deriving of CTMI from the geometric moments 
by two methods. Section 6 provides some experimental results 
concerning the time computation of CTM, image 
reconstruction by CTM and the invariability and objects 
classification by CTMI. Section 7 concludes the work. 

II. CLASSICAL DISCRETE ORTHOGONAL POLYNOMIALS  

In this section, we will present a brief introduction to the 
theoretical background of discrete orthogonal polynomials 
with one variable of Tchebichef and Charlier [29-30].  

A. Tchebichef’s polynomials 
 The discrete orthogonal polynomials of Tchebichef with one 
variable (x;N-1)nt  satisfy the following first-order partial 
difference equation [30]:  

 

( ) ( ; 1) ( 1 2 ) ( ; 1)
                                          ( 1) ( ; 1) 0
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 The operators ( ; 1) ( 1; 1) ( ; 1)n n nt x N t x N t x N∆ − = + − − −  and 

( ; 1) ( ; 1) ( 1; 1)n n nt x N t x N t x N∇ − = − − − −  denote the forward and 
backward finite difference operators, respectively. 
 The nth Tchebichef polynomial is defined by using 
hypergeometric function as: 
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where 3 2F is the generalized hypergeometric function given 
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 The normalized discrete orthogonal polynomials of 
Tchebichef are defined by: 
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with ( )t nρ  is the squared norm of Tchebichef polynomials 
defined as: 
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Such that the orthogonal condition is defined as: 
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where nmδ denotes the Dirac function. 
 To compute the discrete orthogonal polynomials of 
Tchebichef, we use the recurrence relation with respect to 
variable x .  
 By considering the properties of the operators ∆  and ∇  
we have: 

 ( ; 1) ( 1; 1) 2 ( ; 1) ( 1; 1)n n n nt x N t x N t x N t x N∆∇ − = + − − − + − −  (7) 
 Thus, the recurrence relations of Tchebichef discrete 
orthogonal polynomials with respect to variable x can be 
obtained through (1) and (7) as follows: 
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  The initial values of recurrence relation with respect to 
variable x are defined as: 
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B. Charlier’s polynomials 
 The discrete orthogonal polynomials of Charlier 1 ( )a

nC x  
satisfy the following first-order partial difference equation [29-
30]. 

 
1 1 1

1( ) ( ) ( ) ( ) 0 a a a
n n nx C x a x C x nC x∆∇ + − ∆ + =  (10) 

 The nth discrete orthogonal polynomials of Charlier 1 ( )a
nC x  

are defined by using hypergeometric function as [35]:     

INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS AND SIGNAL PROCESSING Volume 8, 2014

ISSN: 1998-4464 92



 

 

1 1( )
2 0 1 ,

0
( ) ( , ;;1 )

n
a a k
n k n

k
C x F n x a xα

=

= − − = ∑
 (11) 

where 10,1, 2  ;  0    ;     0x n a= … ≥ >  

2 0F is the hypergeometric function defined as: 
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 The set of discrete orthogonal polynomials of Charlier 
{ }1 ( )a

nC x  forms a complete set of discrete basis functions with 

weight function 
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and satisfies the orthogonal condition 

 
1 1

0
( ) ( ) ( ) ( )

N
a a

c n m c nm
x

w x C x C x nρ δ
=

=∑
 (14) 

where ( )nρ  is the squared norm of Charlier discrete 
orthogonal polynomials defined as: 
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!(n)c n
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 To avoid fluctuations in the numerical calculation of 
Charlier orthogonal polynomial we use their normalized form 
defined as: 
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 The recurrence relations of Charlier’s discrete orthogonal 
polynomials with respect to variable x can be obtained through 
Eq.(7) and Eq.(10) as follows: 
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 The initial values of recurrence relation with respect to 
variable x are defined as: 
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C. Product Charlier-Tchebichef polynomials 

 The bivariate discrete orthogonal polynomials of Charlier-
Tchebichef are obtained from the product of discrete 
orthogonal polynomials with one variable of Charlier 1 ( )a

nC x  

and Tchebichef ( , 1)nt x N −  [31-33]: 

1
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and are orthogonal on the set 0{( , ) :  i  ,   0 1} V i j j N= ∈ ≤ ≤ −   
with respect to the weight function of the Charlier-
Tchebichef’s discrete orthogonal polynomials is defined as: 
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III. CHARLIER-TCHEBICHEF MOMENTS 

The two-dimensional (2-D) Charlier-Tchebichef’s discrete 
orthogonal moments (CTM) of order (n+m)th of an image 
intensity function ( , )f x y  with size MxN is defined as 

 
1

1 1

,
0

1 1

0

( , , 1) ( , )

            = ( ) ( , 1) ( , )

M N

nm n m
x y O

M N
a
n n

x y O

CTM Ct x y N f x y

C x t y N f x y

− −

= =

− −

= =

= −

−

∑ ∑

∑ ∑ 



 (21) 

with 1 ( )a
nC x and ( , 1)nt y N −  is the nth order of orthonormal 

polynomials of Charlier and Tchebichef respectively. 
 The computation of Charlier- Tchebichef moments by using 
Eq. (21) seems to be a time consuming task mainly due to the 
need of computation a set of complicated quantities for each 
moment order and the need to evaluate the polynomial values 
for each pixel of the image. To accelerate the computation of 
Charlier-Tchebichef’s moments we will use the methodology 
of the image slice representation (ISR) [20-21] described as 
follows. 

A. Fast computation of Charlier-Tchebichef moments 
 In this approach, the image is decomposes into series of 
binary slices and each slice is represented by a set of blocks, 
each block corresponding to an object. These blocks are 
defined as a rectangular area that includes a set of connected 
pixels. By applying the ISR approach, the image is described 
by the relation: 

 1
( , ) ( , )

L

i
i

f x y f x y
=

= ∑
 (22) 

where L is the number of slices and if  is  the intensity 
function of the ith slice. In the case of a binary image L is 1 
and thus 1( , ) ( , )f x y f x y= . 
 After the decomposition of the image into several slices of 
two levels, we can apply the algorithm IBR [20]. The image 

( , )f x y can be redefined in terms of blocks of different 
intensities  

 

{ }
{ }

( , ) ( , ), 1,2,....,

            , 1,2,...., 1
i

ij i

f x y f x y i L

b j K

= =

= = −
 (23) 

where ijb is the block of the edge i and iK  is the number of 
image blocks with intensity. Each block is described by the 
coordinates of the upper left and down right corner in vertical 
and horizontal axes. 
 The Eq. (19) can be rewritten as:   
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where i

nm

bCTM  are the (n+m) order Charlier-Tchebichef 
moments of the ith binary slice. 
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with 1, 2,( , )
i ib bx x and 1, 2,( , )

i ib by y  are respectively the 

coordinates in the upper left and lower right block ib   
and 
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IV. IMAGES RECONSTRUCTION VIA  CHARLIER-TCHEBICHEF MOMENTS 

In this section, the image representation capability of 
Charlier-Tchebichef’s moments is shown. The Charlier-
Tchebichef’s moments of the image are first calculated and 
subsequently its image representation power is verified by 
reconstructing the image from the moments.  
 By solving the equation Eq. (21) and the equation of 
orthogonality, the image intensity function ( , )f x y  can be 
written completely in terms of the Charlier-Tchebichef’s 
moments as: 
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 The image intensity function can be represented as a series 
of Charlier-Tchebichef’s polynomials by the Charlier-
Tchebichef’s moments. If the moments are limited to 
order max , the series is truncated to 
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 (29) 
 To accelerate the reconstruction processes, we can 
reconstruct the whole image by a finite number of Charlier-
Tchebichef’s moments can be accomplished by reconstructing 
only a small portion the pixels (the upper left and down right 
pixels are always reconstructed) of each block in each slice. 
The remaining pixels are assigned intensity equal to the mean 
value of the intensities of the two reconstructed pixels. 
 The equation for the pixel reconstruction of each block 
takes the following form 
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 (30) 
An objective measure based on means squared error (MSE) 

is used to characterize the error between the original image 
( , )f x y and the reconstructed image ˆ ( , )f x y : 
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V. CHARLIER-TCHEBICHEF’S INVARIANT MOMENTS 

Given a digital image ( , )f x y with size M×N, the geometric 
moments nmGM  are defined using discrete sum approximation 
as: 
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 The set of geometric invariant moments (GMI) by rotation, 
scaling and translation can be written as [1]: 
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 The (n+m)th central geometric moments is defined in [1] 
by: 
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A. Computation of Charlier-Tchebichef ‘s invariant 
moments  

To use the Charlier-Tchebichef’s moments for the objects 
classification, it is indispensable that be invariant under 
rotation, scaling, and translation of the image. Therefore to 
obtain the translation, scale and rotation invariants moments of 
Charlier-Tchebichef (CTMI), we adopt the same strategy used 
by Author et al. for Hahn’s moments in [26]. That is, we 
derive the CTMI through the geometric moments using the 
direct method and the fast method based on image slice 
representation methodology.  

The Charlier-Tchebichef moments of ( , )f x y  can be written 
in terms of geometric moments as: 
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where the nth order of Charlier and Tchebichef discrete 
orthogonal polynomials are given by: 
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  The Charlier-Tchebichef’s invariant moments (CTMI) 
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B. Fast computation of Charlier-Tchebichef’s invariant 
moments 

In order to accelerate the time computation of CTMI, we 
will apply the algorithms of image slice representation 
described previously.  
 By using the binomial theorem, the GMI defined in Eq.(32) 
can be calculated as follows: 
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where 
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 By applying the IBR algorithm, the normalized central 
moment defined in Eq. (35) can be calculated as follows: 
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where 
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and   ; 1,2,.....kf k S=  is the slices intensity functions, S is the 
number of slices in image f .    ; 1,2,....jb j k= is the block in 
each slice. 1, 1,( , )

i ib bx y  and 2, 2,( , )
i ib bx y  are respectively the 

coordinates in the upper left and lower right block jb . 
 Using the previous equations Eq. (43) and Eq. (41), the 
GMI of Eq. (40) can be rewritten as: 
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 Therefore the CTMI under translation, scaling and rotation 
of the image can be obtained from the equations Eq. (39), Eq. 
(44) and the Eq. (36). 

VI.  RESULTS AND SIMULATIONS 

In this section, we give experimental results to validate the 
theoretical results developed in the previous sections. This 
section is divided into four sub-sections. In the first sub-
section, we will compare the time computation of CTM by the 
direct method and the proposed method for binary and gray-
scale images. In the second one, we will test the ability of 
CTM for the reconstruction of binary and gray-scale images. 
In sub-section three, the invariability of CTM under the three 
transformations translation, scaling and rotation is shown. In 
the last sub-section, the recognition accuracy of CTMI is 
tested and compared to other descriptions given in [12] for 
objects classification. 

A. Computational time of CTM 
In this sub-section, we will compare the computational time 

of CTM by two methods: the direct method based on Eq. (21) 
and the proposed fast method based on the application of 
image slice representation methodology defined previously by 
Eq. (24) .The execution-time improvement ratio (ETIR) is 
used as a criterion [38]. This ratio is defined as 
ETIR%=(1−Time1/Time2)×100,  where Time1 and Time2 are 
the execution time of the first and the second methods. 
ETIR=0 if both execution times are identical. Note that, all our 
numerical experiments are performed in Matlab8 on a PC Dual 
Core 2.10 GHz, 2GB of RAM. 
    In the first example, a set of five binary images with size 
256×256 pixels (Fig.1) selected from the well-known MPEG-7 
CE-shape-1 Part B database [36] were used as test images. The 
number of blocks (NB) of these images is NB = 608 for Horse,   
NB = 726 for Crown, NB = 510 for Bird, NB = 446 for Bell, 
and NB = 283 for Tree. Note that the computation time for the 
extraction of blocks of each image is approximately 0.1ms. 
The computational processes are performed 20 times for the 
moments of Charlier-Tchebichef for each of the five images 
where the average times of CTM and execution-time 
improvement ratio (ETIR) are included in Table 1. The 
obtained results are represented and displayed in Table 1. The 
result indicates again that the proposed method has a better 
performance than the direct method in terms of computation 
time of CTM. 
 In the second example, a set of five gray-scale images with a 
size of 128x128 pixels shown in Fig. 2 were used. The number 
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of slices (NS) and the number of blocks (NB) of these images 
are (NS=250, NB = 14108) for Lena, (NS=245, NB = 13551) 
for Plane, (NS=235, NB = 10335) for Mountain, (NS=225, 
NB = 14086) for Flower and (NS=236, NB = 14384) for 
Highway and the computation time to extract the blocks of 
each image are approximately in 1ms. The computational 
processes are performed 20 times of Charlier-Tchebichef's 
moments for each of the five images where the average times 
of CTM and execution-time improvement ratio (ETIR) are 
included in Table 1. The result indicates also that the proposed 
fast method has a better performance than the direct method 
because the computation of CTM by the proposed method 
depends only on the number of blocks than the image’s size.  
 For both types of images, the computation time of CTM has 
accelerated considerably and the gain of time arrives until 86% 
for binary images and 79% for images in grayscale. 

.  
Fig.1. Set of test binary images: Horse, Crown, Bird, Bell and Tree. 

 
Fig 2: Gray-scale images: Lena, Plane, Mountain, Flower and 
Highway. 

Table 2:  Average times in seconds and reduction percentage of 
binary and gray-scale images. 

 Computational time of CMT for 
Binary images Gray-scale images 

Direct method 2,66 8,54 
Proposed method 0,37 1,72 
ETIR % 86,05 % 79,89% 

 

B. Image reconstruction via CTM 
In this section, we will discuss the ability of CTM for the 

reconstruction of the binary and gray-scale images using the 
two methods: the direct method and the proposed method. To 
evaluate the capacity of image reconstruction, we will 
calculate the means squared error (MSE) defined by Eq. (31) 
between the original and the reconstructed images.  

Two numerical experiments have been carried out to verify 
the image reconstruction capability of the proposed method 
and the direct method when they are used for binary and gray-
scale images. The test of both binary image “Horse”: image of 
size 200x200 (Fig. 3) and the gray-scale image “Lena” of size 
256×256 (Fig. 3) is used with a maximum moment order 
ranging from 0 to 200. Fig. 4 and Fig. 5 show the MSE of the 
proposed method and the direct method for the binary and the 
gray-scale images. It is obvious that the MSE decreases as the 
moment of order increases where the MSE gets near to zero 

with increasing time order. When the maximum moments 
order gets to a certain value, the reconstructed images will be 
very close to the original ones. The figures also show that the 
proposed method is efficient in terms of quality of the 
reconstruction of binary and gray-scale images and faster than 
the direct method. 

Finally we will compare the reconstruction ability of CTM 
for gray-scale image “Lena” by other set of separable discrete 
moment’s defined in [12], Tchebichef-Krawtchouk moments 
(TKM), Tchebichef-Hahn moments (THM) and Krawtchouk-
Hahn moments (KHM). Fig. 6 shows the MSE of CTM by the 
proposed method compared to TKM, THM and KHM. From 
this comparison, the proposed CTM moments is still better 
compared to that of other moments.  

C. Invariability 
In this section we test the invariability of Charlier-

Tchebichef invariant moments under translation, scale and 
rotation of the image. For this we will use a gray-scale image 
“Cat” (Fig.3) whose size is 128x128 pixels chosen from the 
well-known Columbia database [37]. This image is scaled by a 
factor varying from 0.5 to 1.5 with interval 0.05, rotated from 
00 to 3600 with interval 100 and translated by a vectors 
varying from (-5,-5) to (5,5). Each translation vector consists 
of two elements which represent a vertical and a horizontal 
image shift respectively. All invariant moments of CTMI is 
calculated up to order two for each transformation. Finally, in 
order to measure the ability of the CTMI to remain unchanged 
under different image transformations, we define the relative 
error between the two sets of invariant moments corresponding 
to the original image ( , )f x y  and the transformed image 

( , )g x y  as: 

 

( ) ( )
( , )

( )CM
CTMI f CTMI g

E f g
CTMI f

−
=

 (45) 
where . denotes the Euclidean norm and ( ) ;  CT ( )CTMI f MI g  
are invariant moments of Charlier-Tchebichef for the original 
image f and the transformed image g .  

  
(a) (b) 

Fig. 3. (a) Lena gray-scale image, (b) Horse binary image 
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Fig. 4. Reconstruction error MSE of CTM for binary image “Horse” 
by the direct method and the fast method. 
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Fig. 5. Reconstruction error MSE of CTM for binary image “Horse” 
by the direct method and the fast method. 
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Fig. 6. Comparative study of reconstruction error MSE of CTM, 
TKM, THM and KHM for gray-scale image “Lena” by the fast 
method. 

 
Fig. 7. Cat gray-scale image 
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Fig. 8  Comparative study of relative error between the rotated image 
and the original image by CTMI, TKMI,THMI and KHMI. 
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Fig. 9  Comparative study of relative error between the scaled image 
and the original image by CTMI, TKMI, THMI and KHMI. 
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Fig. 10  Comparative study of relative error between the translated  
image and the original image by CTMI, TKMI, THMI and KHMI. 

 Fig. 8 compares the relative error between the proposed 
invariant moments of CTMI, the invariant moments of 
Tchebichef -Krawtchouk TKMI [12], the invariant of 
Tchebichef-Hahn THMI [12], and the invariant of Hahn 
Krawtchouk-HKMI [12], relative to rotation of the image. It 
can be seen from this figure that the CTMI is more stable 
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under rotation (very low relative error) and is better 
performance than the TKMI, THMI and KHMI, whatever the 
rotational angle.  
 Fig. 9 shows the relative error between the CTMI, TKMI, 
THMI and KHMI relative to scale. The figure shows that, in 
most cases, the relative error of CTMI is more stable and 
lower than the TKMI, THMI and KHMI. 
  Fig. 10 shows the relative error between the CTMI, TKMI, 
THMI and KHMI relative to translation. The figure shows 
again that, in most cases, the relative error of CTMI is more 
stable and  better performance than the TKMI, THMI and 
KHMI, whatever the translation vectors. Note that, the results 
are plotted in Figures (7, 8 and 9) for the case 1 80a = for the 
Charlier’s polynomials, 0.5p = for Krawtchouk’s polynomials 
and 10a b= = for Hahn’s polynomials. 
The results show that the CTMI is more s table under 
translation, scale and rotation of the image than the TKMI, 
THMI and KHMI. 
 To test the robustness to noise, we have respectively added 
a white Gaussian noise (with mean 0µ =  and different 
variances) and salt-and-pepper noise (with different noise 
densities). Results are respectively depicted in Figs.10 and 11. 
It can be seen that, if the relative error increases with the noise 
level, the proposed descriptors of CTMI are more robust to 
noise than TKMI, THMI and KHMI.    
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Fig. 11 Comparative study of relative error between the corrupted 
image (salt & pepper) and the original image by CTMI, TKMI, 
THMI and KHMI.  
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Fig. 12 Comparative study of relative error between the corrupted 
image (white Gaussian) and the original image by CTMI, TKMI, 
THMI and KHMI. 

D. Classification 
 In this section, we will provide experiments to validate the 
precision of recognition and the classification of objects using 
the CTMI. For this, we will put in place the characteristic 
vectors defined by: 

 
  ;  , 0,1,2ijV CTM i j = =   (46) 

 To perform the classification of the objects to their 
appropriate classes we will use simple classifiers based on 
Euclidean distances [35]. 

 

( ) ( ) 2

1
( , ) ( )

n
k k

s t sj tj
j

d x x x x
=

= −∑
 (47) 

 The above formula measure the distance between two 
vectors where sx  is the n-dimensional feature vector of 

unknown sample, and ( )k
tx the training vector of class k. If the 

two vectors x  and y  are equals, then ( , )d x y  tend to 0. 
Therefore to classify the images, one takes the minimum 
values of the distance.  
We define the recognition accuracy as: 

 

Number of  correctly classified images 100%
The total of  images used in  the test

η = ×
 (48) 

 In order, to validate the precision of recognition and the 
classification of objects using the CTMI, we well use two 
image databases. These bases are standard bases used by the 
scientific community during the testing and validation of their 
approach and are freely available on the Internet. Each image 
database has defined the classes where each image belongs to 
one class. The first database is MPEG-7 CE-shape-1 Part [36]. 
This database contains 20 different binary images for 72 
objects. Each image is resized in 128x128. This base has the 
characteristic of being widely used in image classification. The 
second image database is the Columbia Object Image Library 
(COIL-20) database [37]. The total number of images is 1440 
distributed as 72 images for each object. All images of this 
database have the size 128x128. We tested the ability of 
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classification of our descriptor CTMI compared to other 
descriptors of Tchebichef-Krawtchouk invariant moments 
(TKMI) [12], Tchebichef-Hahn invariant moments (THMI) 
[12] and Krawtchouk-Hahn invariant moments (KHMI) [12] 
for the two databases. The test is followed by adding different 
densities of salt-and-pepper noise.  
 The results show the efficiency of the CTMI in terms of 
recognition accuracy of noisy images, compared to those of 
THMI, TKMI and KHMI. The comparison results shows the 
superiority of the proposed moments based on polynomials the 
Charlier and Tchebichef relative to moments based on the 
other polynomials. Note that the recognition of non-noisy 
binary image by our method is 100%, and the accuracy of the 
recognition decreases with increasing noise. 
 Finally, the proposed CTMI are robust to image 
transformations under noisy conditions, and the recognition 
accuracy. 

Table.2.1 Classification results of MPEG-7 CE-shape-1 database 
using Euclidean distance 
  Salt &pepper noise 
 Noise free 1% 2% 3% 4% 
TKMI 100% 97.18% 95.67% 91.29% 91.01% 
THMI 100% 76.89% 94.36% 91.85% 89.57% 
KHMI 100% 97.19% 95.81% 92.03% 90.14% 

CTMI 100% 97.58 % 96.15% 93.64% 91.47% 

Table.2.2 Classification results of COILL-20 objects database using 
Euclidean distance 

Salt &pepper noise 
 Noise free 1% 2% 3% 4% 
TKMI 96.57% 95.49% 87.65% 79.14% 74.38% 
THMI 97.06% 95.25% 88.24% 78.16% 75.01% 
KHMI 97.35% 95.47% 87.14% 80.56% 74.64% 
CTMI 98.15% 96.24% 89.58% 81.25% 76.98% 

VII. CONCLUSION 

In this paper, we have proposed a fast method for the 
computation of a new set of Charlier-Tchebichef discrete 
orthogonal moments. This method is performed using the 
bivariate discrete orthogonal polynomials of Charlier-
Tchebichef and the image slice representation. The 
computation of CTM using this method depends only on the 
number of blocks, which can significantly reduce the time 
computation. Furthermore, we have proposed a new set of 
Charlier-Tchebichef’s invariant moments by two methods. The 
robustness to noise and the accuracy of recognition of the 
proposed CTMI in the classification of the object are carried 
out and are better than that of TKMI, THMI and KHMI. These 
moments have desirable image representation capability and 
can be useful in the field of image analysis.                
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